Skip to content

Soc 100 Assignment Discovery

1. Wheeler QD, Raven PH, Wilson EO. 2004. Taxonomy: impediment or expedient?Science303, 285 (doi:10.1126/science.303.5656.285) [PubMed]

2. Knowles LL, Carstens BC. 2007. Delimiting species without monophyletic gene trees. Syst. Biol.56, 887–895 (doi:10.1080/10635150701701091) [PubMed]

3. Carstens BC, Dewey TA. 2010. Species delimitation using a combined coalescent and information-theoretic approach: an example from North American Myotis bats. Syst. Biol.59, 400–414 (doi:10.1093/sysbio/syq024) [PMC free article][PubMed]

4. Hausdorf B, Hennig C. 2010. Species delimitation using dominant and codominant multilocus markers. Syst. Biol.59, 491–503 (doi:10.1093/sysbio/syq039) [PubMed]

5. Leaché AD, Fujita MK. 2010. Bayesian species delimitation in West African forest geckos (Hemidactylus fasciatus). Proc. R. Soc. B277, 3071–3077 (doi:10.1098/rspb.2010.0662) [PMC free article][PubMed]

6. O'Meara BC. 2010. New heuristic methods for joint species delimitation and species tree inference. Syst. Biol.59, 59–73 (doi:10.1093/sysbio/syp077) [PMC free article][PubMed]

7. Ence DD, Carstens BC. 2011. SpedeSTEM: a rapid and accurate method for species delimitation. Mol. Ecol. Res.11, 473–480 (doi:10.1111/j.1755-0998.2010.02947.x) [PubMed]

8. Yeates DK, Seago A, Nelson L, Cameron SL, Joseph L, Trueman JWH. 2010. Integrative taxonomy, or iterative taxonomy?Syst. Entomol.36, 209–217 (doi:10.1111/j.1365-3113.2010.00558.x)

9. Camargo A, Morando M, Avila LJ, Sites JW., Jr 2012. Species delimitation with ABC and other methods: a test of accuracy with simulations and an empirical example with lizards of the Liolaemus darwinii complex (Squamata: Liolaemidae). Syst. Biol.66, 2834–3849 [PubMed]

10. de Queiroz K. 2007. Species concepts and species delimitation. Syst. Biol.56, 879–886 (doi:10.1080/10635150701701083) [PubMed]

11. Hausdorf B. 2011. Progress toward a general species concept. Evolution65, 923–931 (doi:10.1111/j.1558-5646.2011.01231.x) [PubMed]

12. Fujita MK, Leaché AD, Burbrink FT, McGuire JA, Moritz C. 2012. Coalescent-based species delimitation in an integrative taxonomy. Trends Ecol. Evol.27, 480–488 (doi:10.1016/j.tree.2012.04.012) [PubMed]

13. Bauer AM, et al. 2011. Availability of new Bayesian-delimited gecko names and the importance of character-based species descriptions. Proc. R. Soc. B278, 490–492 (doi:10.1098/rspb.2010.1330) [PMC free article][PubMed]

14. Fujita MK, Leaché AD. 2011. A coalescent perspective on delimiting and naming species: a reply to Bauer et al. Proc. R. Soc. B278, 493–495 (doi:10.1098/rspb.2010.1864)

15. Wiens JJ, Penkrot TA. 2002. Delimiting species using DNA and morphological variation and discordant species limits in spiny lizards (Sceloperus). Syst. Biol.51, 69–91 (doi:10.1080/106351502753475880) [PubMed]

16. Rissler LJ, Apodaca JJ. 2007. Adding more ecology into species delimitation: Ecological niche models and phylogeography help define cryptic species in the Black Salamander (Aneides flavipunctatus). Syst. Biol.56, 924–942 (doi:10.1080/10635150701703063) [PubMed]

17. Sistrom MJ, Donnellan SC, Hutchinson MN. 2013. Delimiting species in recent radiations with low levels of morphological divergence: a case study in Australian Gehyra geckos. Mol. Phyl. Evol.68, 135–143 (doi:10.1016/j.ympev.2013.03.007) [PubMed]

18. Pardial JM, Miralles A, De la Riva I, Vences M. 2010. The integrative future of taxonomy. Front. Zool.7, 16 (doi:10.1186/1742-9994-7-16) [PMC free article][PubMed]

19. Liu L. 2008. BEST: Bayesian estimation of species trees under the coalescent model. Bioinformatics24, 2542–2543 (doi:10.1093/bioinformatics/btn484) [PubMed]

20. Kubatko LS, Carstens BC, Knowles LL. 2009. STEM: species tree estimation using maximum likelihood for gene trees under coalescence. Bioinformatics25, 971–973 (doi:10.1093/bioinformatics/btp079) [PubMed]

21. Heled J, Drummond AJ. 2010. Bayesian inference of species trees from multilocus data. Mol. Biol. Evol.27, 570–580 (doi:10.1093/molbev/msp274) [PMC free article][PubMed]

22. Yang Z, Rannala B. 2010. Bayesian species delimitation using multilocus sequence data. Proc. Natl Acad. Sci. USA107, 9264–9269 (doi:10.1073/pnas.0913022107) [PMC free article][PubMed]

23. Huelsenbeck JP, Andolfatto P. 2007. Inference of population structure under a Dirichlet process model. Genetics175, 1787–1802 (doi:10.1534/genetics.106.061317) [PMC free article][PubMed]

24. Zapata F, Jiménez I. 2012. Species delimitation: inferring gaps in morphology across geography. Syst. Biol.61, 179–194 (doi:10.1093/sysbio/syr084) [PubMed]

25. Sobel JM, Chen GF, Watt LR, Schemske DW. 2010. The biology of speciation. Evolution64, 295–315 (doi:10.1111/j.1558-5646.2009.00877.x) [PubMed]

26. Carstens BC, Pelletier TA, Reid NM, Salter JD. 2013. How to fail at species delimitation. Mol. Ecol.22, 4369–4383 (doi:10.1111/mec.12413) [PubMed]

27. Elmer KR, Lehtonen TK, Kautt AF, Harrod C, Meyer A. 2010. Rapid sympatric ecological differentiation of crater lake cichlid fishes within historic times. BMC Biol.8, 60 (doi:10.1186/1741-7007-8-60) [PMC free article][PubMed]

28. Harrington RC, Near TJ. 2012. Phylogenetic and coalescent strategies of species delimitation in Snubnose Darters (Percidae: Etheostoma). Syst. Biol.61, 63–79 (doi:10.1093/sysbio/syr077) [PubMed]

29. Wagner CE, Keller I, Wittwer S, Selz OM, Mwaiko S, Greuter L, Sivasundar A, Seehausen O. 2013. Genome-wide RAD sequence data provide unprecedented resolution of species boundaries and relationships in the Lake Victoria cichlid adaptive radiation. Mol. Ecol.22, 787–798 (doi:10.1111/mec.12023) [PubMed]

30. Edwards DL, Melville J, Joseph L, Keogh JS. In revision.Ecological divergence, adaptive radiation and the evolution of sexual signaling traits in a complex of Australian agamid lizards. Evolution.

31. Gower JC. 1971. A general coefficient of similarity and some of its properties. Biometrics27, 857–871 (doi:10.2307/2528823)

32. Maechler M. 2010. Cluster 1.13.2 See http://cran.r-project.org/web/packages/cluster/index.html

33. Tamura K, Peterson D, Peterson N, Stecher G, Neo M, Kumar S. 2011. Mega5: Molecular evolutionary genetic analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol.28, 2731–2739 (doi:10.1093/molbev/msr121) [PMC free article][PubMed]

34. Jukes TH, Cantor CR. 1969. Evolution of protein molecules. In Mammalian protein metabolism (ed. Munro HN, editor. ), pp. 21–123 New York, NY: Academic Press

35. Venables WN, Ripley BD. 2002. Modern applied statistics with S, 4th edn New York, NY: Springer

36. Zhang C, Zhang D-X, Zhu T, Yang Z. 2011. Evaluation of a Bayesian coalescent method of species delimitation. Syst. Biol.60, 747–761 (doi:10.1093/sysbio/syr071) [PubMed]

37. Drummond AJ, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol.7, 214 (doi:10.1186/1471-2148-7-214) [PMC free article][PubMed]

38. Fraley C, Raftery AE. 2002. Model-based clustering, discriminant analysis, and density estimation. J. Am. Stat. Assoc.97, 611–631 (doi:10.1198/016214502760047131)

39. Storr GM. 1965. The Amphibolurus maculatus species group (Lacertilia, Agamidae) in Western Australia. J. Roy. Soc. West. Aust.48, 45–54

40. Olave M, Solà E, Knowles LL. 2014 Upstream analyses create problems with DNA-based species delimitation. Syst. Biol. In press. [PubMed]

41. Petit RJ, Excoffier L. 2009. Gene flow and species delimitation. Trends Ecol. Evol.24, 386–393 (doi:10.1016/j.tree.2009.02.011) [PubMed]

42. Degnan JH, Rosenberg NA. 2009. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol.24, 332–340 (doi:10.1016/j.tree.2009.01.009) [PubMed]

43. Knowles LL. 2009. Estimating species trees: methods of phylogenetic analysis when there is incongruence across genes. Syst. Biol.58, 463–467 (doi:10.1093/sysbio/syp061) [PubMed]

44. Vähä J-P, Primmer CR. 2006. Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol. Ecol.15, 63–72 (doi:10.1111/j.1365-294X.2005.02773.x) [PubMed]

45. Kerr JT, Ostrovsky M. 2003. From space to species: ecological applications for remote sensing. Trends Ecol. Evol.18, 299–305 (doi:10.1016/S0169-5347(03)00071-5)

46. Isaac NJ, Mallet J, Mace GM. 2004. Taxonomic inflation: its influence on macroecology and conservation. Trends Ecol. Evol.19, 464–469 (doi:10.1016/j.tree.2004.06.004) [PubMed]

47. Huang H, He Q, Kubatko LS, Knowles LL. 2010. Sources of error inherent in species-tree estimation: impact of mutational and coalescent effects on accuracy and implications for choosing different methods. Syst. Biol.59, 573–583 (doi:10.1093/sysbio/syq047) [PubMed]

48. Tänzler R, Sagata K, Surbakti S, Balke M, Reidel A. 2012. DNA barcoding for community ecology – How to tackle a hyperdiverse, mostly undescribed Melanesian fauna. PLoS ONE7, e28832 (doi:10.1371/journal.pone.0028832) [PMC free article][PubMed]

"The single best thing about the textbook is how it balances being attractive and accessible for student readers, and being well-organized and strong content-wise to meet my expectations as an instructor."
--Matthew Green (11/01/2015)

"There is good linkage between theory and the discussions. The vignettes on what one can do with a sociology degree tying specific topics to the skills desired in different areas, is unique."
--Othello Harris (11/01/2015)

"The combination of the content covered, the level of difficulty, design, and the quality of the supplemental materials was winning. "
--Olena Leipnik

(Chapter 6, Deviance and Social Control)--"This is my favorite chapter. You do everything that I need, especially the theories. The global perspective is excellent."--Elaine Leeder

"I prefer [Ch. 1] in Discover Sociology over my current text, in part for the clear delineation of schools of thought (or sociological paradigms) and the contributions of early social theorists. This is important because students regularly complain about having to memorize names. Asking them instead to focus on how a paradigm (e.g. structural functionalism) would explain something [like gender inequality] is much more helpful."

--Robert S. Mackin

-The single best thing about the textbook is how it balances being attractive and accessible for student readers, and being well-organized and strong content-wise to meet my expectations as an instructor.-
--Matthew Green (11/01/2015)

-There is good linkage between theory and the discussions. The vignettes on what one can do with a sociology degree tying specific topics to the skills desired in different areas, is unique.-
--Othello Harris (11/01/2015)

-The combination of the content covered, the level of difficulty, design, and the quality of the supplemental materials was winning. -
--Olena Leipnik

(Chapter 6, Deviance and Social Control)---This is my favorite chapter. You do everything that I need, especially the theories. The global perspective is excellent.---Elaine Leeder

-I prefer [Ch. 1] in Discover Sociology over my current text, in part for the clear delineation of schools of thought (or sociological paradigms) and the contributions of early social theorists. This is important because students regularly complain about having to memorize names. Asking them instead to focus on how a paradigm (e.g. structural functionalism) would explain something [like gender inequality] is much more helpful.- --Robert S. Mackin --This text refers to an out of print or unavailable edition of this title.

Read more